Effective and Efficient Anonymization of Health-Related Physical Activity Data

Pooja Parameshwarappa, Zhiyuan Chen and Gunes Koru

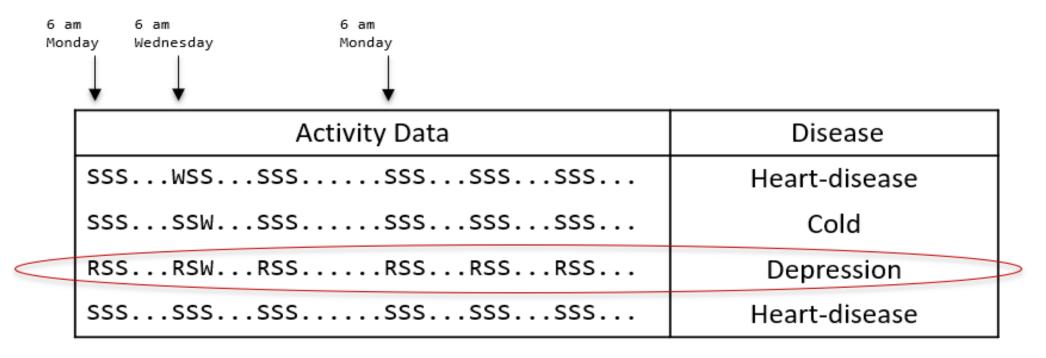
University of Maryland, Baltimore County

Motivation - I

- Availability of physical activity data is increasing
 - Use of wearable devices [Kaewkannate et al., 2016]
 - Use of smart-phone fitness applications [Higgins, J.P., 2016]
 - Data from smart-environments [Skocir et al., 2016 and Jakkula et al., 2011]
- Publishing activity data can help
 - Research in fighting chronic diseases [Ermes et al., 2008]
 - Research in reducing health care costs [Spenkelink et al., 2002, Centers for Disease Control and Prevention, 2015]
 - Reproducible research [Peng, 2011]
 - Facilitate teaching data analytics
- However, publishing activity data comes with high privacy risks
 - Re-identification

Motivation – II: Re-identification Example

- Adversary's knowledge
 - Victim's record is in the data set
 - The victim runs at 6:00 am every Monday, Wednesday, and Friday



• Possible Solution: Anonymization

Background (k-Anonymity)

• A given data set is said to satisfy k-anonymity if every record in a table has at least k-1 other records that are identical with respect to the quasi-identifiers [Sweeney, 2002]

33 M 21235 Cancer $[28-33] * 2123*$ Cancer		Disease	Zipcode	\mathbf{Sex}	Age	Disease	Zipcode	\mathbf{Sex}	Age
25 M 21222 Ineart-disease $[22 - 25]$ 2122 Ineart-dise 33 M 21235 Cancer $[28 - 33]$ * 2123* Cancer		Cold	2122*	*	[22 - 25]	Cold	21220	Μ	22
	ease	Heart-disease	2122^{*}	*	[22 - 25]	Heart-disease	21222	Μ	25
		Cancer	2123*	*	[28 - 33]	Cancer	21235	Μ	33
30 F 21232 Cancer $[28-33] + 2123^{+}$ Cancer		Cancer	2123^{*}	*	[28 - 33]	Cancer	21232	\mathbf{F}	30
28 F 21234 Cancer $[28-33]$ * 2123* Cancer		Cancer	2123^{*}	*	[28 - 33]	Cancer	21234	\mathbf{F}	28

Original Data

2-Anonymous Data

Limitation of Existing Anonymization Techniques: Dealing With Sequential Data

- Most of the anonymization techniques are suitable for cross-sectional data sets
- Activity data is sequential in nature
 - Each time point acts a dimension
 - Very high dimensionality

1	2	3		123	n
Age	Sex	Zipcode	Disease	Activity Data	
22	М	21220	Cold	SSSWSSSSSSSSSSSSSS.	
25	Μ	21222	Heart-disease	SSSSSWSSSSSSSSSSSS.	
33	Μ	21235	Cancer		
30	\mathbf{F}	21232	Cancer	RSSRSWRSSRSSRSSRSS.	
28	\mathbf{F}	21234	Cancer		
				SSSSSSSSSSSSSSSSSS.	

Limitations of Existing Anonymization Techniques

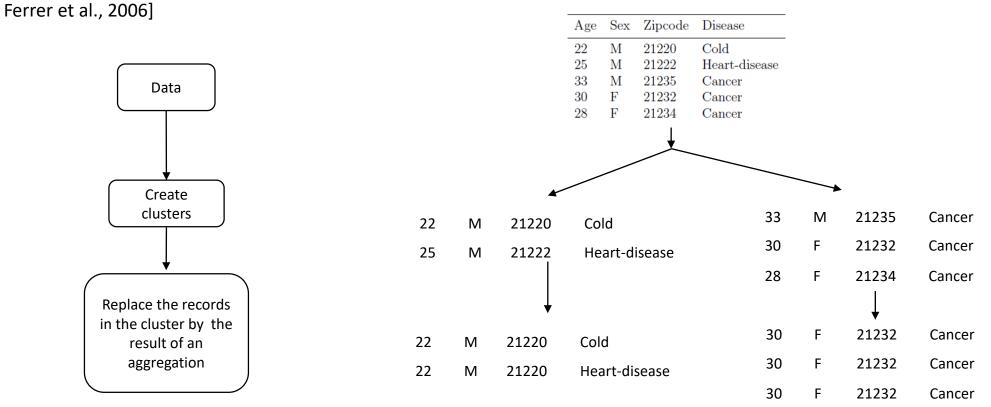
• For sequential data, entire sequence represents the potential quasiidentifiers

Age	\mathbf{Sex}	Zipcode	Disease	Activity Data
22	М	21220	Cold	SSSWSSSSSSSSSSSSSS
25	Μ	21222	Heart-disease	SSSSSWSSSSSSSSSSSS
33	Μ	21235	Cancer	
30	\mathbf{F}	21232	Cancer	RSSRSWRSSRSSRSSRSS
28	\mathbf{F}	21234	Cancer	
				SSSSSSSSSSSSSSSSSS
	Cros	s-sectional D	ata	Sequential Data

9

Method

• One of the approaches to achieve k-anonymity is Microaggregation [Domingo-



• A well-known heuristic method for achieving microaggregation is, Maximum Distance to Average Vector (MDAV) [Domingo-Ferrer et al., 2006, Solanas et al., 2006]

Proposed Approach

Step 1: Multi-level Clustering (MC)

- At the root level, all the activity sequences are assigned to one cluster
- In the subsequent levels:
 - Sequences are aggregated to certain time intervals (dimensionality reduction)
 - Clustered using MDAV
- This process is repeated until each cluster at the leaf-level has at least k sequences

Step 2: Anonymization (MCKA – Multi-level Clustering Based K-Anonymity)

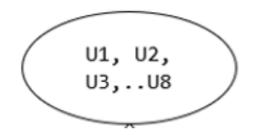
• K-Anonymity is applied to each leaf-level cluster

Proposed Approach - Example

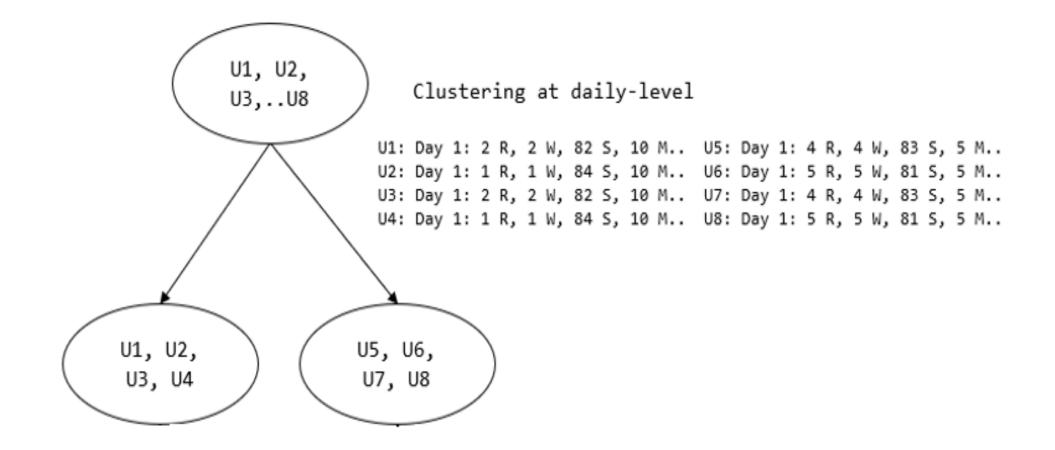
Step 1: Multi-level Clustering (MC)

• At the root level, all the sequences are assigned to one cluster

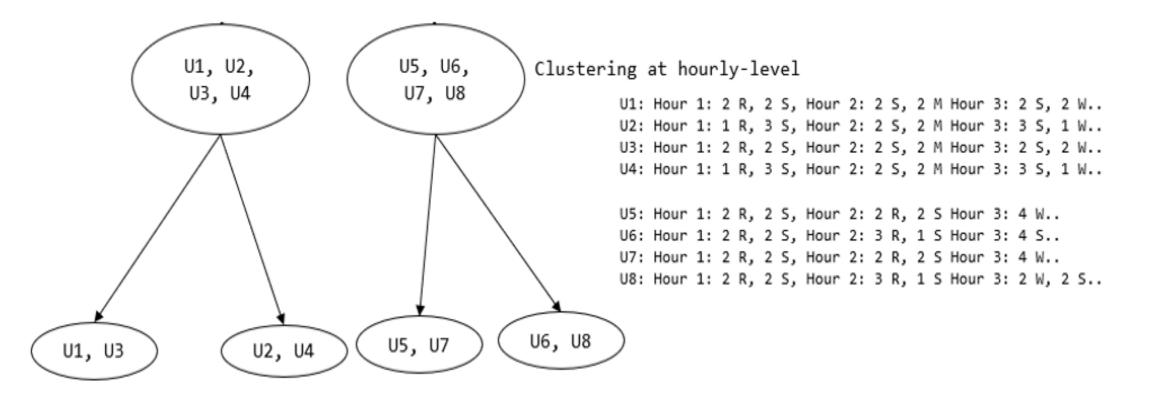
U1: S, S, R, R, S, S, M, M, S, S, W, W, ...
U2: S, S, R, S, S, S, M, M, S, S, W, S, ...
U3: R, R, S, S, M, M, S, S, W, W, S, S, ...
U4: R, S, S, S, M, M, S, S, S, W, S, S, ...
U5: S, S, R, R, S, S, R, R, W, W, W, W, ...
U6: S, S, R, R, S, R, R, R, S, S, S, S, S, ...
U7: S, S, R, R, R, R, R, S, S, W, W, W, ...
U8: S, S, R, R, S, R, R, R, S, S, W, W, ...



 The sequences are then aggregated to certain time intervals, and then clustered using MDAV

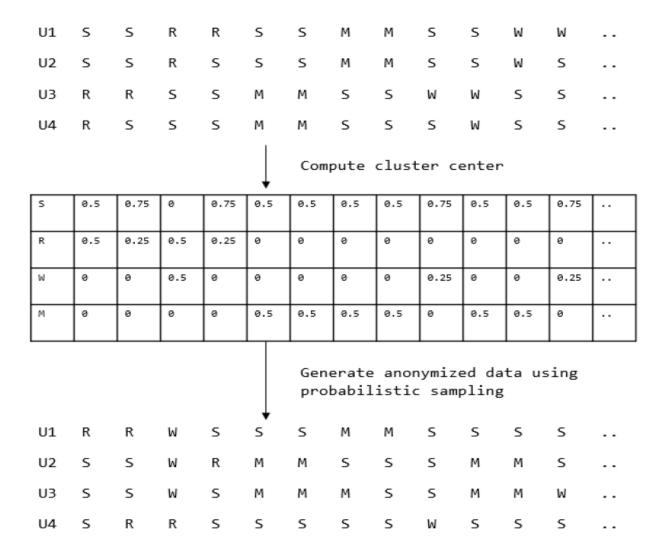


- In the next level, the sequences are drilled down to smaller time intervals and clustered using MDAV
- These steps are repeated until each cluster at the leaf level has at least k sequences



Step 2: Multi-level Clustering Based K-Anonymity (MCKA)

- Compute centroid for each cluster
- Instead of replacing the sequences in a cluster with the centroid, simulate as many sequences as the size of the cluster by using the centroid



Experimental Design - I

- Student Life data set was used [Wang et al., 2014]
- Original data had activity information (Stationary, Walking, Running and Missing) for 49 students
- Synthetic data was generated for 9800 students (1.9 GB)
- System configuration
 - 32 GB RAM, 3.3 GHz processor
 - Windows 10 operating system
 - R programming (Single thread implementation)

Experimental Design - II

- Activity information was available at minute-level intervals, for two weeks, for every student
- Activity sequences were clustered using MC (proposed approach) and using MDAV (conventional approach)
- Clusters were anonymized using k-anonymity
- Efficiency
 - Time taken for clustering
- Utility
 - Relative difference between un-anonymized and anonymized data
 - Correlations between activity and other attributes (Flourishing scale, CGPA)

Comparing MC and MDAV -- Efficiency

	MC (k=5)	MDAV $(k=5)$	MDAV $(k=5)$
		(Daily)	(No aggregation)
Time for clustering	$21 \mathrm{mins}$	2.6 hrs	>12.6 hrs (memory issues)

- MDAV on the original data set ran out of memory
- Upon aggregation to higher time intervals, MDAV completed in 2.6 hours and MC completed in 21 mins

Comparing MCKA and MDAV-KA -- Utility

- Data was clustered using both MC and MDAV.
- K-Anonymity was applied on the resulting clusters
- Relative difference between un-anonymized data and anonymized data was computed

	MCKA	MDAV-KA
	k=5	k=5
Daily (S)	0.08	0.08
Daily (W)	0.23	0.22
Daily (\mathbf{R})	0.17	0.16
Daily (M)	0.22	0.21

• MCKA and MDAV-KA showed comparable results

Preserving Correlations -- Utility

• Direction and magnitude of the correlations were preserved after anonymization

	Activity-Flou	urishing	Activity-C	GPA
	Correlation (r)	p-value	Correlation (r)	p-value
Un-anonymized data	0.146	< 2.2 e-16	-0.289	< 2.2e-16
MCKA $(k=5)$	0.146	< 2.2 e-16	-0.290	< 2.2e-16
MCDP $(k=50)$	0.129	< 2.2e-16	-0.293	< 2.2e-16

Discussion

- Efficiency
 - MC reduces computation time from hours to minutes
- Utility
 - MC-KA has relative difference comparable with MDAV-KA
 - Direction and magnitude of the correlations are preserved
- Privacy
 - MCKA guarantees k-Anonymity
 - Suitable for both small and large data sets

Conclusion

- The proposed approach preserves privacy and utility, and in addition, reduces the computation time from hours to minutes
- To the best of our knowledge, no prior study reported such an improvement
- It is generic enough to be extended to other similar data sets
- This approach can enable organizations to follow the encouragements stated in the NIH data sharing policy