

(University of Pittsburgh						
*E Pa	*European Pressure Ulcer Advisory Panel and National Pressure Ulcer Advisory Panel (2016) Classification System					
(2016)	Sign and symptoms					
Stage I	Intact skin with a localized area of non -blanchable erythema, which may appear differently in darkly pigmented skin. Presence of blanchable					
	erythema or changes in sensation, temperature, or firmness may precede visual changes. Color changes do not include purple or maroon					
	discoloration; these may indicate deep tissue pressure injury.					
Stage II	Partial-thickness loss of skin with exposed dermis. The wound bed is viable, pink or red, moist, and may also present as an intact or ruptured					
	serum-filled blister. Adipose (fat) is not visible and deeper tissues are not visible. Granulation tissue, slough and eschar are not present					
	Full-thickness loss of skin, in which adipose (fat) is visible in the ulcer and granulation tissue and epibole (rolled wound edgestre often present.					
Stage III	Slough and/or eschar may be visible. The depth of tissue damage varies by anatomical location; areas of significant adiposity can develop deep					
	wounds. Undermining and tunneling may occur. Fascia, muscle, tendon, ligament, cartilage and/or bone are not exposed. If slough or eschar					
	obscures the extent of tissue loss this is an Unstageable Pressure Injury.					
Stage IV	Full-thickness skin and tissue loss with exposed or directly palpable fascia, muscle, tendon, ligament, cartilage or bone in the ulcer. Slough					
	and/or eschar may be visible. Epibole (rolled edges), undermining and/or tunneling often occur. Depth varies by anatomical location. If slough					
	or eschar obscures the extent of tissue loss this is an Unstageable Pressure Injury.					
Unstageable	Full-thickness skin and tissue loss in which the extent of tissue damage within the ulcer cannot be confirmed because it is obscured by slough					
	or eschar. If slough or eschar is removed, a Stage 3 or Stage 4 pressure injury will be revealed. Stable eschar (i.e. dry, adherent, intact without					
	erythema or fluctuance) on the heel or ischemic limb should not be softened or removed.					

🛞 University of Pittsburgh

Image Processing: Applications

• Medical Imaging

Tumor detection, wound assessment

- Monitoring
- Traffic, surveillance, defects detection
- Automation
- Robotics, factory, driving
 - *Google and UBER autonomous car

🛞 University of Pittsburgh

Applications: Digital Wound Assessment (DWA)

- Digital Wound Assessment
- Can be done locally or remotely
- Can be 2D or 3D

(University of Pittsburgh

How Should Photos be taken? --Wound Photography Protocol

- Step 1: Prepare a digital camera with industry-standard resolution for high image quality
- Step 2: Undress the wound and thoroughly cleanse the wound
- Step 3: Position the camera perpendicularly to the wound
- Step 4: Hold a small measurement grid flat along edge of the wound but not cover any part of wound
- Step 5: Take the photographs under adequate light
- Step 6: Upload the photos into the EHR

O University of Pittsburgh

Photography Characteristics Affecting Image Processing Wound Analysis

Clinical background objects

Image processing wound assessment: Preprocessing

- Relative position of the PI in the photographs Image processing wound assessment: Segmentation
- Camera shooting angle
 Image processing wound assessment: Image Analysis

University of Pittsburgh

Method

- A 520-bed hospital in western Pennsylvania
- 360 Pressure Injury Photographs from EHR
- An experienced WOCN nurse and a nurse researcher reviewed all the PI photographs
- An image processing algorithm was used to calculate camera shooting angle.

(University of Pittsburgh						
Result: Quality of Pressure Injury Photographs						
	Variables	Number	Percentage			
	Total collected photographs	360	100%			
	Blurred photographs	14	3.9%			
	Un-integrated PI	9	2.5%			
	Total qualified photographs	337	93.6%			

University of Pittsburgh						
Result: Statistics of Clinical Background Objects						
Clinical Background Objects	Number	Percentage				
Bed linens	113	33.5%				
Gowns	155	46.0%				
Other body parts	98	29.1%				
Glove	56	16.6%				
Ceiling and walls	47	13.9%				
Floor	69	20.5%				
Others	86	26.4%				

low University of Pittsburgh						
Result: Statistics of pressure Injury relative position in the images						
	3.3% (11/337)	3.0% (10/337)	2.4% (8/337)			
	3.0% (10/337)	80.1% (270/337)	1.8% (6/337)			
	2.1% (7/337)	3.6% (12/337)	0.9% (3/337)			

(University of Pittsburgh

Discussions

- Photograph characteristics such as clinical background objects, camera angle, and the relative position of the PI in the images do not affect wound assessment when assessment from photographs by clinicians.
- Image processing experts must consider clinical background objects when developing image processing technologies for wound analysis.
- Any method that is designed to retrieve wound dimension from wound photographs must incorporate a correction for suboptimal camera shooting angle.

(University of Pittsburgh

Conclusion

- The characteristics of pressure injury photos provide preliminary evidence of how they affect image processing and wound analysis.
- Certain standards and techniques must be followed when photographing the PIs—or other chronic wounds in order to further utilize the PI photographs.

(University of Pittsburgh

Thank you!